Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Article in English | MEDLINE | ID: mdl-36542015

ABSTRACT

BACKGROUND: The American cutaneous leishmaniasis (ACL) is expanding in peri-urban environments. METHODS: An entomological survey was conducted in the area of the occurrence of an autochthonous urban case of ACL. Sandflies and a parasitological slide of the human case were submitted for molecular diagnosis. RESULTS: Nyssomyia whitmani and Ny. antunesi were the most frequently collected species. Ny. whitmani and Bichromomyia flaviscutellata were positive for Leishmania guyanensis and L. lainsoni, respectively. The human case tested positive for L. lainsoni. CONCLUSIONS: Sandflies and Leishmania parasites present in urban forest may occur frequently in nearby domiciliary environments; thus, these areas must be monitored.


Subject(s)
Leishmania guyanensis , Leishmania , Leishmaniasis, Cutaneous , Psychodidae , Animals , Humans , Urbanization , Insect Vectors/parasitology , Leishmaniasis, Cutaneous/epidemiology , Psychodidae/parasitology , Brazil/epidemiology
2.
Article in English | MEDLINE | ID: mdl-36074446

ABSTRACT

Visceral leishmaniasis (VL) is mainly caused by Leishmania (Leishmania) donovani and Leishmania (L.) infantum; however, other Leishmania species have been associated with VL. We report a case of a patient simultaneously diagnosed with VL caused by Leishmania (L.) amazonensis and Hodgkin's lymphoma. After treatment with liposomal amphotericin B and chemotherapy, the patient presented a clinical cure. This case report reinforces the hypothesis that other Leishmania species can cause visceral lesions mainly related to immunosuppression.


Subject(s)
Hodgkin Disease , Leishmania donovani , Leishmania infantum , Leishmaniasis, Visceral , Hodgkin Disease/complications , Hodgkin Disease/drug therapy , Humans , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy
3.
Environ Toxicol Pharmacol ; 91: 103821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35093559

ABSTRACT

The present study evaluated neurotoxic, biotransformation, genotoxic and antioxidant responses to relevant environmental concentrations of diclofenac (0.4 µg L-1) and caffeine (27.5 µg L-1), separate and combined, in adult males of the freshwater fish Astyanax altiparanae after a subchronic exposure (14 days). Fish exposed to diclofenac and caffeine, both separate and combined, revealed a neurotoxic effect through the inhibition of acetylcholinesterase activity in the muscle, while diclofenac alone and in combination caused cyclooxygenase inhibition. Caffeine alone produces genotoxicity on this species but, when combined with diclofenac, it potentiates hepatic lipoperoxidation and the inhibition of oxidative stress enzymes, while diclofenac alone or in combination produces a general inhibition of important enzymes. This study suggests that aquatic contamination produced by these pharmaceuticals has the potential to affect homeostasis and locomotion in A. altiparanae and compromise their immune system and general health.


Subject(s)
Characiformes , Water Pollutants, Chemical , Acetylcholinesterase/metabolism , Animals , Biotransformation , Caffeine/toxicity , Characiformes/metabolism , DNA Damage , Diclofenac/toxicity , Male , Oxidative Stress , Water Pollutants, Chemical/metabolism
4.
Rev. Soc. Bras. Med. Trop ; 55: e0359, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422858

ABSTRACT

ABSTRACT Background: The American cutaneous leishmaniasis (ACL) is expanding in peri-urban environments. Methods: An entomological survey was conducted in the area of the occurrence of an autochthonous urban case of ACL. Sandflies and a parasitological slide of the human case were submitted for molecular diagnosis. Results: Nyssomyia whitmani and Ny. antunesi were the most frequently collected species. Ny. whitmani and Bichromomyia flaviscutellata were positive for Leishmania guyanensis and L. lainsoni, respectively. The human case tested positive for L. lainsoni. Conclusions: Sandflies and Leishmania parasites present in urban forest may occur frequently in nearby domiciliary environments; thus, these areas must be monitored.

5.
Article in English | LILACS-Express | LILACS | ID: biblio-1406883

ABSTRACT

ABSTRACT Visceral leishmaniasis (VL) is mainly caused by Leishmania (Leishmania) donovani and Leishmania (L.) infantum; however, other Leishmania species have been associated with VL. We report a case of a patient simultaneously diagnosed with VL caused by Leishmania (L.) amazonensis and Hodgkin's lymphoma. After treatment with liposomal amphotericin B and chemotherapy, the patient presented a clinical cure. This case report reinforces the hypothesis that other Leishmania species can cause visceral lesions mainly related to immunosuppression.

6.
Article in English | MEDLINE | ID: mdl-34246795

ABSTRACT

Aluminum (Al) and manganese (Mn) can be toxic to aquatic biota and cause endocrine disruption in fish, affecting reproduction. This study evaluates the physiological responses of the ray-finned teleost fish Astyanax altiparanae vitellogenic females after acute exposure (96 h) to Al and Mn (alone and combined) in acid pH followed by the same period of exposure to metal-free water in neutral pH. The aim of this second period of exposure was to assess the recovery capacity from the toxic effects these metals. Five experimental groups were established: a control in neutral pH (Ctrl), and acidic pH (Ac), aluminum (Al), manganese (Mn), and Al + Mn groups, maintaining the acidic pH in the groups to which metals were added. The following biological parameters were evaluated: metal tissue concentration, relative fecundity (RF: absolute fecundity/body mass). Plasma levels of cortisol (proxy for stress) and 17α hydroxyprogesterone (17α-OHP), and gene expression of pituitary lhß mRNA (proxies for final maturation) were measured to evaluate endocrine disruption. In the synchronic exposure, the presence of Mn potentiated the accumulation of Al in gills. The females from acidic pH and Al groups showed a reduced RF. Exposure to Al and Mn triggered an endocrine disruption response, evidenced by a decrease in the plasma concentration of 17α-OHP and cortisol. Despite this anti-steroidogenic effect, no changes occurred in the pituitary gene expression of lhß. The endocrine changes and the metal accumulation were temporary, while the impacts on RF under the experimental conditions suggest permanent impairment in the reproduction of this species.


Subject(s)
Aluminum/toxicity , Characidae , Endocrine Disruptors/toxicity , Manganese/toxicity , Ovary/drug effects , 17-alpha-Hydroxyprogesterone/blood , Aluminum/pharmacokinetics , Animals , Characidae/physiology , Ecotoxicology , Endocrine Disruptors/pharmacokinetics , Female , Fertility/drug effects , Fish Proteins/genetics , Hydrocortisone/blood , Hydrogen-Ion Concentration , Manganese/pharmacokinetics , Tissue Distribution , Water/chemistry , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity
7.
Front Cell Infect Microbiol ; 11: 687647, 2021.
Article in English | MEDLINE | ID: mdl-34178725

ABSTRACT

American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.


Subject(s)
Leishmania braziliensis , MicroRNAs , Parasites , Animals , Brazil , Humans , Inflammation , MicroRNAs/genetics
8.
Article in English | MEDLINE | ID: mdl-33385526

ABSTRACT

In this study, we measured aluminum (Al) bioconcentration in the brain, ovaries, and liver of Oreochromis niloticus females, and analyzed the effects of exposure to Al and acidic pH on the gene expression of follicle-stimulating hormone (ßfsh) and luteinizing hormone (ßlh) in these animals. Mature females were divided into 4 groups, thus being maintained for 96 h in one of the following conditions: control at neutral pH (Ctr); Al at neutral pH (Al); acidic pH (Ac), and Al at acidic pH (Al-Ac). pH alone did not influence Al bioconcentration in the brain. The animals from the Al-Ac group bioconcentrated more Al in the ovaries than those from the Al group, while no differences were observed in the liver. Aluminum bioconcentration was higher in the brain than in the liver and ovaries in Al-exposed animals (Al and Al-Ac), and higher in the brain than in the ovaries in the Ctr and Ac groups. The liver bioconcentrates more Al than the ovaries in the females from the Ctr and Ac groups. Aluminum and/or acidic pH did not alter ßfsh gene expression, while ßlh gene expression decreased in females from the Al group. Aluminum acted as an endocrine disruptor, suggesting deleterious effects in reproduction that could result in ovulation failure. Aluminum can act directly and/or indirectly in the pituitary, affecting ovarian steroidogenesis and altering the reproductive endocrine axis of mature O. niloticus females in an acute period of exposure.


Subject(s)
Aluminum/toxicity , Cichlids , Follicle Stimulating Hormone/metabolism , Luteinizing Hormone/metabolism , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Animals , Female , Follicle Stimulating Hormone/genetics , Gene Expression Regulation/drug effects , Hydrogen-Ion Concentration , Luteinizing Hormone/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Comp Biochem Physiol C Toxicol Pharmacol, v. 241, 108965, mar. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3430

ABSTRACT

In this study, we measured aluminum (Al) bioconcentration in the brain, ovaries, and liver of Oreochromis niloticus females, and analyzed the effects of exposure to Al and acidic pH on the gene expression of follicle-stimulating hormone (βfsh) and luteinizing hormone (βlh) in these animals. Mature females were divided into 4 groups, thus being maintained for 96 h in one of the following conditions: control at neutral pH (Ctr); Al at neutral pH (Al); acidic pH (Ac), and Al at acidic pH (Al-Ac). pH alone did not influence Al bioconcentration in the brain. The animals from the Al-Ac group bioconcentrated more Al in the ovaries than those from the Al group, while no differences were observed in the liver. Aluminum bioconcentration was higher in the brain than in the liver and ovaries in Al-exposed animals (Al and Al-Ac), and higher in the brain than in the ovaries in the Ctr and Ac groups. The liver bioconcentrates more Al than the ovaries in the females from the Ctr and Ac groups. Aluminum and/or acidic pH did not alter βfsh gene expression, while βlh gene expression decreased in females from the Al group. Aluminum acted as an endocrine disruptor, suggesting deleterious effects in reproduction that could result in ovulation failure. Aluminum can act directly and/or indirectly in the pituitary, affecting ovarian steroidogenesis and altering the reproductive endocrine axis of mature O. niloticus females in an acute period of exposure.

10.
Pathogens ; 9(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019713

ABSTRACT

Leishmaniases are zoonotic vector-borne diseases caused by protozoan parasites of the genus Leishmania that affect millions of people around the globe. There are various clinical manifestations, ranging from self-healing cutaneous lesions to potentially fatal visceral leishmaniasis, all of which are associated with different Leishmania species. Transmission of these parasites is complex due to the varying ecological relationships between human and/or animal reservoir hosts, parasites, and sand fly vectors. Moreover, vector-borne diseases like leishmaniases are intricately linked to environmental changes and socioeconomic risk factors, advocating the importance of the One Health approach to control these diseases. The development of an accurate, fast, and cost-effective diagnostic tool for leishmaniases is a priority, and the implementation of various control measures such as animal sentinel surveillance systems is needed to better detect, prevent, and respond to the (re-)emergence of leishmaniases.

11.
Microb Genom ; 6(9)2020 09.
Article in English | MEDLINE | ID: mdl-32886592

ABSTRACT

The outcome of Leishmania infection is strongly influenced by the host's genetic background. BALB/c mice are susceptible to Leishmania infection, while C57BL/6 mice show discrete resistance. Central to the fate of the infection is the availability of l-arginine and the related metabolic processes in the host and parasite. Depending on l-arginine availability, nitric oxide synthase 2 (NOS2) of the host cell produces nitric oxide (NO) controlling the parasite growth. On the other hand, Leishmania can also use host l-arginine for the production of polyamines through its own arginase activity, thus favouring parasite replication. Considering RNA-seq data, we analysed the dual modulation of host and parasite gene expression of BALB/c or C57BL/6 mouse bone marrow-derived macrophages (BMDMs) after 4 h of infection with Leishmania amazonensis wild-type (La-WT) or L. amazonensis arginase knockout (La-arg-). We identified 12 641 host transcripts and 8282 parasite transcripts by alignment analysis with the respective Mus musculus and L. mexicana genomes. The comparison of BALB/c_La-arg-versus BALB/c_La-WT revealed 233 modulated transcripts, with most related to the immune response and some related to the amino acid transporters and l-arginine metabolism. In contrast, the comparison of C57BL/6_La-arg-vs. C57BL/6_La-WT revealed only 30 modulated transcripts, including some related to the immune response but none related to amino acid transport or l-arginine metabolism. The transcriptome profiles of the intracellular amastigote revealed 94 modulated transcripts in the comparison of La-arg-_BALB/c vs. La-WT_BALB/c and 45 modulated transcripts in the comparison of La-arg-_C57BL/6 vs. La-WT_C57BL/6. Taken together, our data present new insights into the impact of parasite arginase activity on the orchestration of the host gene expression modulation, including in the immune response and amino acid transport and metabolism, mainly in susceptible BALB/c-infected macrophages. Moreover, we show how parasite arginase activity affects parasite gene expression modulation, including amino acid uptake and amastin expression.


Subject(s)
Arginase/genetics , Gene Expression Profiling/methods , Leishmania/genetics , Nitric Oxide Synthase Type II/genetics , Animals , Female , Gene Expression Regulation , Genetic Background , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protozoan Proteins/genetics , Sequence Analysis, RNA
12.
An Bras Dermatol ; 95(4): 459-468, 2020.
Article in English | MEDLINE | ID: mdl-32518010

ABSTRACT

BACKGROUND: American cutaneous leishmaniasis is an infectious dermatosis caused by protozoa of the genus Leishmania, which comprises a broad spectrum of clinical manifestations depending on the parasite species involved in the infections and the immunogenetic response of the host. The use of techniques for amplification of the parasites DNA based on polymerase chain reaction polymerase chain reaction and the recent application of combined techniques, such as high-resolution DNA dissociation, have been described as a viable alternative for the detection and identification of Leishmania spp. in biological samples. OBJECTIVES: To identify the Leishmania species using the polymerase chain reaction high-resolution DNA dissociation technique in skin biopsies of hospital-treated patients, and compare with results obtained by other molecular identification techniques. METHODS: A retrospective study assessing patients with suspected American cutaneous leishmaniasis seen at a hospital in São Paulo/Brazil was conducted. The paraffin blocks of 22 patients were analyzed by polymerase chain reaction high-resolution DNA dissociation to confirm the diagnosis and identify the species. RESULTS: Of the 22 patients with suspected American cutaneous leishmaniasis, the parasite was identified in 14, comprising five cases (35.6%) of infection by L. amazonensis, four (28.5%) by L. braziliensis, two (14.4%) by L. amazonensis+L. infantum chagasi, two (14.4%) by L. guyanensis, and one (7.1%) by Leishmania infantum chagasi. In one of the samples, in which the presence of amastigotes was confirmed on histopathological examination, the polymerase chain reaction high-resolution DNA dissociation technique failed to detect the DNA of the parasite. STUDY LIMITATIONS: The retrospective nature of the study and small number of patients. CONCLUSIONS: The method detected and identified Leishmania species in paraffin-embedded skin biopsies with a sensitivity of 96.4% and could be routinely used in the public health system.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous/parasitology , Brazil , Humans , Leishmania infantum , Leishmaniasis, Mucocutaneous , Retrospective Studies , United States
14.
J Vis Exp ; (156)2020 02 20.
Article in English | MEDLINE | ID: mdl-32150165

ABSTRACT

Leishmania spp. are protozoan parasites that cause leishmaniases, diseases that present a wide spectrum of clinical manifestations from cutaneous to visceral lesions. Currently, 12 million people are estimated to be infected with Leishmania worldwide and over 1 billion people live at the risk of infection. Leishmania amazonensis is endemic in Central and South America and usually leads to the cutaneous form of the disease, which can be directly visualized in an animal model. Therefore, L. amazonensis strains are good models for cutaneous leishmaniasis studies because they are also easily cultivated in vitro. C57BL/6 mice mimic the L. amazonensis-driven disease progression observed in humans and are considered one of the best mice strains model for cutaneous leishmaniasis. In the vertebrate host, these parasites inhabit macrophages despite the defense mechanisms of these cells. Several studies use in vitro macrophage infection assays to evaluate the parasite infectivity under different conditions. However, the in vitro approach is limited to an isolated cell system that disregards the organism's response. Here, we compile an in vivo murine infection method that provides a systemic physiological overview of the host-parasite interaction. The detailed protocol for the in vivo infection of C57BL/6 mice with L. amazonensis comprises parasite differentiation into infective amastigotes, mice footpad cutaneous inoculation, lesion development, and parasite load determination. We propose this well-established method as the most adequate method for physiological studies of the host immune and metabolic responses to cutaneous leishmaniasis.


Subject(s)
Disease Models, Animal , Host-Parasite Interactions/immunology , Leishmania/immunology , Leishmania/pathogenicity , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Virulence , Animals , Female , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred C57BL
15.
Int J Mol Sci ; 20(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835767

ABSTRACT

BACKGROUND: Leishmaniases are neglected tropical diseases that are caused by Leishmania, being endemic worldwide. L-arginine is an essential amino acid that is required for polyamines production on mammal cells. During Leishmania infection of macrophages, L-arginine is used by host and parasite arginase to produce polyamines, leading to parasite survival; or, by nitric oxide synthase 2 to produce nitric oxide leading to parasite killing. Here, we determined the metabolomic profile of BALB/c macrophages that were infected with L. amazonensis wild type or with L. amazonensis arginase knockout, correlating the regulation of L-arginine metabolism from both host and parasite. METHODS: The metabolites of infected macrophages were analyzed by capillary electrophoresis coupled with mass spectrometry (CE-MS). The metabolic fingerprints analysis provided the dual profile from the host and parasite. RESULTS: We observed increased levels of proline, glutamic acid, glutamine, L-arginine, ornithine, and putrescine in infected-L. amazonensis wild type macrophages, which indicated that this infection induces the polyamine production. Despite this, we observed reduced levels of ornithine, proline, and trypanothione in infected-L. amazonensis arginase knockout macrophages, indicating that this infection reduces the polyamine production. CONCLUSIONS: The metabolome fingerprint indicated that Leishmania infection alters the L-arginine/polyamines/trypanothione metabolism inside the host cell and the parasite arginase impacts on L-arginine metabolism and polyamine production, defining the infection fate.


Subject(s)
Arginine/metabolism , Leishmania mexicana/physiology , Macrophages/metabolism , Macrophages/parasitology , Metabolomics , Animals , Discriminant Analysis , Female , Least-Squares Analysis , Metabolic Networks and Pathways , Metabolome , Mice, Inbred BALB C , Parasites/physiology , Proline/metabolism
16.
Sci Rep ; 9(1): 19841, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882833

ABSTRACT

The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.


Subject(s)
Gene Expression Profiling/methods , Leishmania/immunology , Leishmaniasis/immunology , Macrophages, Peritoneal/metabolism , Macrophages/metabolism , Transcriptome , Animals , Host-Parasite Interactions , Leishmania/physiology , Leishmaniasis/genetics , Leishmaniasis/parasitology , Macrophages/parasitology , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction
17.
PLoS One ; 14(4): e0216291, 2019.
Article in English | MEDLINE | ID: mdl-31039202

ABSTRACT

Canine cutaneous leishmaniasis (CCL) is a zoonosis of public health interest, and in the Americas, Leishmania (Viannia) braziliensis has been identified as the main etiological agent. The present study sought to investigate Leishmania spp. infection in domestic dogs from a rural area of the Xapuri municipality, Acre state, Brazilian Amazonia. For this purpose, visits were carried out to domiciles where the human cases of American cutaneous leishmaniasis (ACL) occurred, followed by the clinical evaluation of the animals in search of clinical signs suggestive of CCL. Blood samples were collected from 40 dogs, 13 of which had lesions suggestive of CCL, and biopsies of these lesions were performed. The methods used were Neal, Novy, and Nicolle's (NNN) medium cultures and direct parasitological examination. Further, to detect and characterize Leishmania DNA some molecular techniques were performed such as conventional polymerase chain reaction (PCR) and sequencing targeting SSU rDNA and ITS1, restriction fragment length polymorphism (RFLP) and high resolution melting (HRM) analysis targeting hsp70. The investigation revealed that the results obtained from the parasitological methods were negative. In PCR by ITS1 and network topology sequences, six strains from dogs, isolated from the Peruvian Andes, appeared identical to Leishmania (Viannia) braziliensis type 2 (99-100%). By other molecular methods these samples turned out to be positive to Leishmania (Viannia) sp.. The diagnosis of Leishmania in domestic dogs from Acre state showed a high proportion of infected animals, and the occurrence of L. braziliensis type 2 in Brazil for the first time. This new report suggests that L. braziliensis type 2 is both trans- and cis-Andean. However, more studies are needed regarding the clinical and diagnostic aspects of this species of Leishmania.


Subject(s)
Dog Diseases/parasitology , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/veterinary , Animals , Base Sequence , Biopsy , Brazil/epidemiology , DNA, Ribosomal/genetics , Dogs , Leishmaniasis, Cutaneous/epidemiology , Polymorphism, Restriction Fragment Length , Registries , Transition Temperature
18.
Article in English | MEDLINE | ID: mdl-30949455

ABSTRACT

Leishmaniases are neglected diseases that cause a large spectrum of clinical manifestations, from cutaneous to visceral lesions. The initial steps of the inflammatory response involve the phagocytosis of Leishmania and the parasite replication inside the macrophage phagolysosome. Melatonin, the darkness-signaling hormone, is involved in modulation of macrophage activation during infectious diseases, controlling the inflammatory response against parasites. In this work, we showed that exogenous melatonin treatment of BALB/c macrophages reduced Leishmania amazonensis infection and modulated host microRNA (miRNA) expression profile, as well as cytokine production such as IL-6, MCP-1/CCL2, and, RANTES/CCL9. The role of one of the regulated miRNA (miR-294-3p) in L. amazonensis BALB/c infection was confirmed with miRNA inhibition assays, which led to increased expression levels of Tnf and Mcp-1/Ccl2 and diminished infectivity. Additionally, melatonin treatment or miR-30e-5p and miR-302d-3p inhibition increased nitric oxide synthase 2 (Nos2) mRNA expression levels and nitric oxide (NO) production, altering the macrophage activation state and reducing infection. Altogether, these data demonstrated the impact of melatonin treatment on the miRNA profile of BALB/c macrophage infected with L. amazonensis defining the infection outcome.


Subject(s)
Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Immunologic Factors/metabolism , Leishmaniasis/immunology , Macrophages/immunology , Melatonin/metabolism , Animals , Cells, Cultured , Chemokine CCL2/biosynthesis , Disease Models, Animal , Female , Leishmania/immunology , Macrophages/drug effects , Mice, Inbred BALB C , MicroRNAs/biosynthesis , Nitric Oxide Synthase Type II/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis
19.
Front Immunol ; 9: 2792, 2018.
Article in English | MEDLINE | ID: mdl-30555476

ABSTRACT

Parasite recognition by Toll-like receptors (TLRs) contributes to macrophage activation and subsequent control of Leishmania infection through the coordinated production of pro-inflammatory and microbicidal effector molecules. The modulation of microRNA (miRNA) expression by Leishmania infection potentially mediates the post-transcriptional regulation of the expression of genes involved in leishmanicidal activity. Here, the contribution of TLR signaling to the miRNA profile and gene expression was evaluated in Leishmania amazonensis-infected murine macrophages. The infectivity of L. amazonensis was higher in murine bone marrow-derived macrophages from mice knockout for myeloid differentiation factor 88 (MyD88-/-), TLR2 (TLR2-/-), or TLR4 (TLR4-/-) than wild type C57BL/6 (WT). L. amazonensis infection of WT macrophages modulated the expression of 32% of the miRNAs analyzed, while 50% were upregulated. The absence of MyD88, TLR2, and TLR4 altered the percentage of miRNAs modulated during L. amazonensis infection, including the downregulation of let-7e expression. Moreover, the absence of signals mediated by MyD88, TLR2, or TLR4 reduced nitric oxide synthase 2 (Nos2) mRNA expression during infection. Indeed, the inhibition of let-7e increased levels of the Nos2 mRNA and NOS2 (or iNOS) protein and nitric oxide (NO) production in L. amazonensis-infected macrophages (4-24 h). The absence of TLR2 and inhibition of let-7e increased the expression of the arginase 1 (Arg1) mRNA but did not alter the protein level during infection. However, higher levels of the L-arginine transporters Cat2B and Cat1 were detected in the absence of Myd88 signaling during infection but were not altered following let-7e inhibition. The inhibition of let-7e impacted the global expression of genes in the TLR pathway by upregulating the expression of recognition and adaptors molecules, such as Tlr6, Tlr9, Ly96, Tirap, Traf 6, Ticam1, Tollip, Casp8, Map3k1, Mapk8, Nfkbib, Nfkbil1, Ppara, Mapk8ip3, Hspd1, and Ube2n, as well as immunomodulators, such as Ptgs2/Cox2, Csf 2, Csf 3, Ifnb1, Il6ra, and Ilr1, impacting NOS2 expression, NO production and parasite infectiveness. In conclusion, L. amazonensis infection alters the TLR signaling pathways by modulating the expression of miRNAs in macrophages to subvert the host immune responses.


Subject(s)
Gene Expression Regulation/immunology , Leishmania/immunology , Leishmaniasis/immunology , Macrophages/immunology , MicroRNAs/metabolism , Toll-Like Receptors/immunology , Animals , Female , Leishmaniasis/genetics , Leishmaniasis/pathology , Macrophages/parasitology , Macrophages/pathology , Mice , Mice, Knockout , MicroRNAs/genetics , Toll-Like Receptors/genetics
20.
Parasit Vectors ; 11(1): 421, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012182

ABSTRACT

BACKGROUND: The leishmaniases comprise a spectrum of clinical manifestations caused by different species of Leishmania. Identification of species is important for diagnosis, treatment and follow-up management. However, there is no gold standard for species identification. High resolution melting analysis (HRM) offers a possibility to differentiate Leishmania species without the need for processing of the PCR-product. The amino acid permease 3 (aap3) gene is an exclusive target for trypanosomatids and is conserved among Leishmania spp., thus it can be a valuable target for an HRM assay for diagnosis of the leishmaniases. RESULTS: The HRM dissociation profiles of three amplicons targeting the aap3-coding region allowed the discrimination of L. (Leishmania) donovani, L. (L.) infantum, L. (L.) major, L. (L.) tropica, L. (L.) mexicana, L. (L.) amazonensis, L. (Viannia) braziliensis, L. (V.) guyanensis, L. (V.) lainsoni, L. (V.) naiffi and L. (V.) shawi using DNA from promastigote cultures. The protocol was validated with DNA samples from clinical infection in humans and a cat, naturally infected sand flies, and experimentally infected mice. CONCLUSIONS: HRM analysis using the aap3 coding sequence as target is a relatively cheap, fast and robust strategy to detect and discriminate Leishmania species from all the endemic regions worldwide. The target and method proved to be useful in clinical, field and experimental samples, thus it could be used as a tool in diagnosis as well as ecological and epidemiological studies.


Subject(s)
Amino Acid Transport Systems/genetics , Leishmania/classification , Leishmania/enzymology , Leishmaniasis/diagnosis , Animals , Base Sequence , DNA, Protozoan/genetics , Leishmaniasis/parasitology , Mice , Nucleic Acid Denaturation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...